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ABSTRACT

This study compares ensemble precipitation forecasts from 10-member, 3-km grid-spacing, CONUS

domain single- and multicore ensembles that were a part of the 2016 Community Leveraged Unified En-

semble (CLUE) that was run for the 2016 NOAA Hazardous Weather Testbed Spring Forecasting Experi-

ment. The main results are that a 10-member ARW ensemble was significantly more skillful than a 10-member

NMMB ensemble, and a 10-member MIX ensemble (5 ARW and 5 NMMB members) performed about the

same as the 10-member ARWensemble. Skill was measured by area under the relative operating characteristic

curve (AUC) and fractions skill score (FSS). Rank histograms in the ARW ensemble were flatter than the

NMMB ensemble indicating that the envelope of ensemble members better encompassed observations (i.e.,

better reliability) in theARW.Rank histograms in theMIXensemblewere similar to theARWensemble. In the

context ofNOAA’s plans for aUnified Forecast System featuring aCAMensemblewith a single core, the results

are positive and indicate that it should be possible to develop a single-core system that performs aswell as or better

than the current operational CAM ensemble, which is known as the High-Resolution Ensemble Forecast System

(HREF). However, as new modeling applications are developed and incremental changes that move HREF

toward a single-core system are made possible, more thorough testing and evaluation should be conducted.

1. Introduction and motivation

NOAA has embarked on a multiyear initiative to

evolve the Next Generational Global Prediction System

(NGGPS) to the Unified Forecast System (UFS). The

UFS is envisioned to be a community model that le-

verages expertise from government, academic, and pri-

vate partners, with applications spanning local to global

domains and predictive time scales from subhourly to

seasonal. The ultimate goal is to dramatically improve

U.S. operational weather forecasting and advance the

United States to world leadership in numerical modeling.

The UFS will use a single dynamical core—NOAA’s

Finite-Volume on a Cubed Sphere (FV3)model (Putman

and Lin 2007), which will simplify the National Centers

for Environmental Prediction’s production suite and

better focus model development efforts since multiple

model cores will no longer need to be maintained. The

FY19–21 UFS Strategic Implementation Plan (https://

www.weather.gov/sti/stimodeling_nggps) provides further

details.

With the push toward the UFS, the vision for a future

operational, convection-allowing model (CAM) ensemble

is a single-core system using FV3. However, this is contin-

gent upon development of a computationally affordable

CAM ensemble that provides similar or improved forecast

guidance relative to the current operational system, which

is the High-Resolution Ensemble Forecast System version

2.0 (HREF, hereafter; Roberts et al. 2019; Jirak et al. 2012).

Matching or exceeding the effectiveness of HREF with a

single-core system may prove to be quite challenging since

HREF’s configuration uses different model cores,

physics parameterizations, initial and lateral boundary

conditions, and includes time-lagged members, which

results in optimal spread and very reliable forecast prob-

abilities, even without calibration (e.g., Jirak et al. 2018).

Although HREF’s configuration strategy has proven

to be very effective, the degree to which specific aspects

of the configuration contribute to ensemble spread and

skill is very difficult, if not impossible, to quantify since

multiple sources of ensemble diversity are simultaneously

present. Thus, controlled experiments are needed to

better understand forecast characteristics of CAM en-

sembles and identify the most important contributionsCorresponding author: Adam J. Clark, adam.clark@noaa.gov
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to CAM ensemble spread and skill. This need was a pri-

mary motivation for the first Community Leveraged Uni-

fied Ensemble (CLUE) that was run during the 2016

NOAA Hazardous Weather Testbed Spring Forecasting

Experiment (SFE).1 The CLUE is a coordinated multi-

agency effort to standardize CAM ensemble contributions

from SFE collaborators so that more controlled experi-

ments can be conducted to help guide decision making for

the configuration of future operational CAM ensembles.

Details on the CLUE are found in Clark et al. (2018).

This study focuses on a subset of 2016 CLUE mem-

bers that enable an evaluation of single- versus multi-

core CAM ensemble configurations. Prior research has

demonstrated the effectiveness of multicore (or multi-

model) ensembles for seasonal, medium and short-range

forecasting applications (e.g., Kirtman et al. 2014; Candille

2009; and Du et al. 2006, 2015, respectively), but there is

little prior research testing multimodel CAM ensembles

in controlled experiments. Examining the subset of 2016

CLUEmembers that will be evaluated herein, Clark et al.

(2018) found slight advantages (although not statistically

significant) in the multi- versus single-model strategy

for severe weather and extreme precipitation, but these

comparisons were conducted over 24-h time windows

at relatively coarse spatial scales (severe weather

proxies/reports and extreme precipitation values were

remapped to 81-km grids). Thus, this study aims to

analyze the impact of the multi- versus single-core

strategy for CAM ensemble precipitation forecasts at

higher spatial and temporal resolution. Precipitation

is chosen to build on the results of Clark et al. (2018)

and because it is a very important sensible weather

field for which CAM ensembles exhibit large improve-

ments in forecast skill relative to coarser, parameterized

convection ensembles (e.g., Clark et al. 2009; Iyer et al.

2016). The remainder of this study is organized as fol-

lows: section 2 presents information on the model and

observational datasets, section 3 presents results, and

section 4 provides a summary and conclusions.

2. Data and methods

a. Model specifications and observations

Three 10-member ensembles were compared. The first

used the Advanced Research version of the Weather Re-

search and Forecasting (WRF ARW) Model (Skamarock

et al. 2008), the second used theNonhydrostaticMultiscale

Model on the B Grid (NMMB; Janjić and Gall 2012), and

the third used five of the ARW and five of the NMMB

members (ARW, NMMB, and MIX, respectively). All

members were initialized at 0000 UTC over a contiguous

U.S. domain with 3-km horizontal grid spacing and fore-

casts to 36h. These members were available for each day

the 2016 SFE operated (24days; 2 May–3 June, excluding

weekends/holidays). The NMMB and ARW ensembles

share the same set of initial and lateral boundary con-

ditions, and each ensemble uses its own single set of

physics. A control member in each ensemble used initial

conditions (ICs) and lateral boundary conditions (LBCs;

3-h updates) from 12-km grid-spacing North American

Mesoscale Forecast System (NAM) analyses and fore-

casts, respectively. The other members in each ensemble

were initialized by combining NAM analyses with 3-h

evolved perturbations of 2100 UTC initialized Short-

Range Ensemble Forecast (SREF; Du et al. 2015) Sys-

tem members. Corresponding SREF member forecasts

were used for LBCs.

ARW members used Thompson et al. (2004) micro-

physics, Rapid Radiative Transfer Model for general

circulation models (RRTMG; Iacono et al. 2008) for

short- and longwave radiation, 1680 grid points in the

east–west direction, 1152 in the north–south direction,

and 51 vertical levels with a model top of 50hPa. NMMB

members used Ferrier–Aligo (Aligo et al. 2014) micro-

physics, Rapid Radiative Transfer Model (RRTM;

Mlawer et al. 1997) for short- and longwave radiation,

1568 grid points in the east–west direction, 1120 in the

north–south direction, and 50 vertical levels with a model

top of 50hPa. Both ensembles used theMellor–Yamada–

Janjić (MYJ; Mellor and Yamada 1982; Janjić 2002)

boundary layer parameterization and the Noah land sur-

face model (Chen and Dudhia 2001). Ensemble specifi-

cations forARWandNMMBare summarized in Tables 1

and 2, respectively. The MIX ensemble used the first five

members of the ARW and NMMB ensembles (italicized

in Tables 1 and 2). Thus, all the ICs/LBCs for MIX came

from the ARW SREF members and the NAM.

Two alternative configurations of MIX were also

tested since it is possible that different combinations

of ICs/LBCs could impact the forecast skill and spread.

One alternative configuration used the last five mem-

bers of the ARW and NMMB ensembles, so that the

ICs/LBCs were from oneARWand four NMMBSREF

members. The other used the first five members of the

ARWensemble and the last five members of the NMMB

ensemble, so that none of the members shared ICs/LBCs,

and 4 of 5 ARW (NMMB) members were matched with

ARW (NMMB) SREF members for ICs/LBCs. Al-

though the tests revealed that differences between the

MIX configurations were quite small, the skill scores

1 For information on SFEs see Kain et al. (2003), Clark et al.

(2012), and Gallo et al. (2017). The operations plan and results

summary for the 2016 SFE can be found in Clark et al. (2016a) and

Clark et al. (2016b), respectively.
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for the alternative configurations were slightly lower

than the configuration with ICs/LBCs derived from

ARW SREF members and the NAM, which justifies

this choice for the MIX configuration. In subsequent

analyses, results from these alternative MIX configu-

rations are not shown.

For QPF verification, accumulated precipitation from

NCEP’s radar-derived, gauged corrected Stage IV data-

set (Lin and Mitchell 2005; Lin 2011; Nelson et al. 2016)

with ;4.8-km grid spacing was used.

b. Verification

Forecasts and observations were remapped to a

common 4-km grid using a neighbor-budget interpo-

lation (Accadia et al. 2003) for 3-h (12 time periods; 0–

3, 3–6, . . . , 33–36h) and 24-h (1 time period; 12–36h)

accumulation intervals. Verification metrics were com-

puted over a masked area that covers most of the United

States east of the Rocky Mountains (Fig. 1). The In-

termountain West was avoided since precipitation esti-

mates are not as reliable there (e.g., Smalley et al. 2014).

Separate sets of forecast probabilities for each en-

semble were computed using the ratio of members that

forecast above the thresholds of 0.10, 0.25, 0.50, 0.75,

1.00, 2.00, and 4.00 in. Additionally, a Guassian kernel

with s of 0, 10, and 25km was applied to smooth the

probabilities resulting in three sets of forecasts in each

ensemble at each time and threshold. The smoother was

applied because probabilities on 4-km grids can be very

noisy, and the smoothing adds additional spatial uncer-

tainty and helps account for undersampling from small

ensemble membership (e.g., Clark et al. 2011). Another

set of bias-corrected probabilities was also computed

using the precipitation quantile in each ensemble mem-

ber corresponding to each verification threshold. For

example, if the 1.00-in. threshold in the observations

corresponded to a quantile of X, then I would find the

forecast precipitation amount in each member at the

quantile ofX, and use that forecast precipitation amount

as the threshold to compute the probabilities for precip-

itation $ 1.00 in. Thus, the bias-corrected forecast prob-

abilities were always computed using ensemble members

with a bias of 1.0. The bias correction was an important

step because a high bias can sometimes artificially inflate

verification metrics (e.g., Hamill 1999).

The area under the relative operating characteristic

curve (AUC; Mason 1982), which plots the probability

of detection versus the probability of false detection

TABLE 1. Specifications for theARWmembers (as described in the 2016 SFE operations plan). The naming convention of the members

‘‘s-phys-norad’’ is short for single-physics and no radar data assimilation. The 12-kmNAM analysis and forecast are referred to as NAMa

and NAMf, respectively. In the IC column, the model names appended with ‘‘pert’’ refer to perturbations extracted from SREFmembers

and the terms like p1 and n1 refer to positive and negative perturbations, respectively. Italicized members are included in MIX.

Member IC BC Microphysics LSM PBL Model

s-phys-norad01 NAMa NAMf Thompson Noah MYJ ARW

s-phys-norad02 NAMa1arw-p1_pert arw-p1 Thompson Noah MYJ ARW

s-phys-norad03 NAMa1arw-n1_pert arw-n1 Thompson Noah MYJ ARW

s-phys-norad04 NAMa1arw-p2_pert arw-p2 Thompson Noah MYJ ARW

s-phys-norad05 NAMa1arw-n2_pert arw-n2 Thompson Noah MYJ ARW

s-phys-norad06 NAMa1arw-p3_pert arw-p3 Thompson Noah MYJ ARW

s-phys-norad07 NAMa1nmmb-p1_pert nmmb-p1 Thompson Noah MYJ ARW

s-phys-norad08 NAMa1nmmb-n1_pert nmmb-n1 Thompson Noah MYJ ARW

s-phys-norad09 NAMa1nmmb-p2_pert nmmb-p2 Thompson Noah MYJ ARW

s-phys-norad10 NAMa1nmmb-n2_pert nmmb-n2 Thompson Noah MYJ ARW

TABLE 2. Specifications for the NMMBmembers (as described in the 2016 SFE operations plan). IC and BC columns are the same as in

Table 1. Italicized members are included in MIX.

Member IC BC Microphysics LSM PBL Model

nssl-nmmb01 NAMa NAMf Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb02 NAMa1arw-p1_pert arw-p1 Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb03 NAMa1arw-n1_pert arw-n1 Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb04 NAMa1arw-p2_pert arw-p2 Ferrier–Aligo Noah MYJ NMMB

nssl-nmmb05 NAMa1arw-n2_pert arw-n2 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb01 NAMa1arw-p3_pert arw-p3 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb02 NAMa1nmmb-p1_pert nmmb-p1 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb03 NAMa1nmmb-n1_pert nmmb-n1 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb04 NAMa1nmmb-p2_pert nmmb-p2 Ferrier–Aligo Noah MYJ NMMB

caps-nmmb05 NAMa1nmmb-n2_pert nmmb-n2 Ferrier–Aligo Noah MYJ NMMB
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for a range of forecast probabilities (2% and 5%–95% in

increments of 5% were used herein), was used to verify

the probabilistic forecasts. The AUC measures the dis-

criminating ability of a forecast system (AUC 5 1.0 is

perfect and AUC# 0.5 indicates no skill). Additionally,

the fractions skill score (FSS; Roberts and Lean 2008)

was used to assess spatial placement. FSS is based on the

difference in the fraction of forecast and observed grid

points that exceed a specified threshold within a given

radius of influence (ROI) and was computed using Eq.

(3) in Loken et al. (2019). ROIs of 0, 12, 24, 40, and

60 km were used. To assess whether differences in AUC

were statistically significant, the resampling approach

described by Hamill (1999) was used with resampling

repeated 1000 times and a5 (0.05, 0.10). For differences

in FSS, paired t tests were used with a 5 (0.05, 0.10).

3. Results

For 24-h precipitation accumulation (i.e., 1200–

1200 UTC), the AUC and FSS as a function of threshold

are shown in Fig. 2 (note, only scores calculated using

bias-corrected probabilities are shown, but results from

the raw forecasts are qualitatively similar). For bothAUC

FIG. 1. Verification domain.

FIG. 2. (a) AUC for 24-h accumulated precipitation forecasts as a function of verification threshold from the bias-

corrected ARW, NMMB, and MIX ensembles. The probabilities from one set of forecasts is smoothed using a

Gaussian filter with s 5 25 km [indicated by the label P(s 5 25 km)], while the other does not use any smoothing

[indicated by the label P(s 5 0 km)]. A legend is provided at the bottom left of (a). (b) As in (a), but for FSS

calculated using a radius of influence (ROI) of 12 and 60 km. Labels in (b) above each set of forecasts indicate the

associated ROI.
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and FSS, the ARW and MIX perform very similarly,

while the NMMB has noticeably lower skill. Although

these results seem to favor the ARW and MIX over the

NMMB, none of the differences were significant at a 5
0.10, which may result from small sample size.

For the shorter precipitation accumulation interval of

3 h (Fig. 3), ARW also appears to be superior to NMMB

and about the same as MIX. However, for these shorter

accumulation intervals, significance tests were performed

by treating each 3-h accumulation interval as an inde-

pendent sample (i.e., each day had twelve 3-h periods

resulting in 12 samples per day3 24days5 288 samples).

Though this may violate independence assumptions since

errors at consecutive forecast intervals may have

some correlation, past studies using this strategy such

as Schwartz et al. (2015a,b, 2017), find the autocor-

relations to be very small. Results from the signifi-

cance testing are shown in Fig. 4. For both AUC and

FIG. 3. (a) AUC at precipitation thresholds of 0.25 and 1.00 in. (the thresholds are indicated by labels in each panel) as a function of

forecast hour for precipitation accumulated at 3-h intervals for bias-corrected ARW, NMMB, and MIX ensembles. (b),(c) As in (a), but

the forecast probabilities are smoothed using a Gaussian filter with s 5 10 km and s 5 25 km, respectively. A legend is provided at the

bottom of (b). (d)–(f) As in (a)–(c), but for FSS with ROI of 0, 24, and 60 km, respectively, and precipitation thresholds of 0.10, 0.25, 0.50,

and 1.00 in. are displayed.
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FSS, ARW has significantly higher scores than NMMB

mostly for the 0.10- and 0.25-in. thresholds (Fig. 4), how-

ever none of the differences between ARW and MIX

were statistically significant (not shown).

To examine how each ensemble depicted the diurnal

rainfall cycle, Hovmöller (or time–longitude) diagrams

were constructed using longitudinally averaged ensemble-

mean precipitation at each forecast hour, along with

the Stage-IV observed precipitation (Figs. 5a–c). The en-

semble means were computed using probability matching

(e.g., Clark 2017). The Hovmöller diagrams show that,

although ARW and NMMB depict the general charac-

teristics of the diurnal cycle quite well, both have a west-

ward displacement in the west to east propagating corridor

of heaviest precipitation between forecast hours 3–15. In

addition, NMMB has noticeably worse overprediction,

especially during forecast hours 3–12 over the Central

Plains. To quantify the quality of the diurnal cycle de-

piction in the members, spatial correlation coefficients

were computed in time–longitude space for forecast

hours 3–36 (Fig. 6d). The ARWcorrelations tended to be

stronger than those of NMMB indicating a better di-

urnal cycle depiction in ARW.

Finally, to evaluate the spread for each ensemble, rank

histograms (e.g., Hamill 2001) for 24-h precipitation

accumulations were constructed for both non-bias-

corrected (Fig. 6a) and bias-corrected (Fig. 6b) forecasts.

The bias-corrected rank histograms were constructed

by simply using the precipitation quantiles instead of

amounts. For the raw forecasts, ARW, NMMB, and

MIX all have right skewness indicating overprediction,

but the ARW and MIX are flatter than NMMB, which

indicates that observations more frequently fall with

the envelope of ensemble members (usually an indi-

cation of improved reliability). For the bias-corrected

rank histograms, all three ensembles have the charac-

teristic U shape indicating underdispersion, but ARW

and MIX are noticeably flatter than NMMB, and MIX

and ARW are very similar. In the alternative configu-

ration of MIX in which all ICs/LBCs were unique, the

MIX rank histograms were slightly flatter than ARW

(not shown).

4. Summary and conclusions

Much work is needed to meet the ambitious goal of a

Unified Forecast System (UFS) to dramatically improve

U.S. operational weather forecasting, especially for short-

range, storm-scale applications. The CLUE initiative,

which began in 2016 as part of the NOAA Hazardous

FIG. 4. Grid showing at which s and precipitation threshold differences in AUC between the ARW and NMMB

ensembles were statistically significant at a 5 0.05 (red) and a 5 0.10 (pink) for (a) raw forecasts, and (b) bias-

corrected forecasts. (c),(d) As in (a) and (b), but for FSS at different ROIs.
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FIG. 5. Time–longitude (Hovmöller) diagrams of ensemblemean precipitation (computed using probability matching) averaged at each

forecast hour over all 24 cases for (a)ARW, (b)NMMB, and (c) Stage IV observations. The hatched area in each panel indicates where the

Stage IV precipitation was greater than 0.25 in. h21, and the maps above each panel indicate the area over which the Hovmöller diagrams

were constructed. (d) Boxplots showing the distribution of spatial correlations between Stage IV observations and ARW and NMMB

members computed in Hovmöller space for forecast hours 4–36 (i.e., each boxplot shows the distribution of spatial correlations from the

10 members comprising each ensemble).
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Weather Testbed Spring Forecasting Experiment, aims

to help meet the goal of a UFS by providing evidence

from controlled experiments to help guide decision

making for configurations of future operational CAM

ensembles. In this study, ensemble subsets from the

2016 CLUE are examined to evaluate the impact of

multi- versus single-core CAM ensemble configuration

strategies on ensemble precipitation forecasts. This is an

important aspect of CAM ensemble configuration, since

the vision for the UFS is a single-model system (based

on FV3) to better focus model development efforts. In

the summary that follows, be mindful that the scope of

the validation was limited to precipitation during May

and early June. Although this period does account for

a disproportionately large amount of the annual pre-

cipitation for much of the verification domain, it is not

known whether results would be similar if other seasons

were included.

Results showed that, in general, for direct compar-

isons of precipitation forecasts between 10-member,

single-core ARW and NMMB ensembles, the ARW

ensemble is superior as measured by AUC and FSS.

The MIX ensemble—comprised of five ARW and five

NMMB members—performs about the same as the

ARW. These results are in slight contrast to those of

Clark et al. (2018), which showed that ARW per-

formed better than NMMB for severe weather and

extreme precipitation, but that MIX performed the

best with scores that were slightly higher than ARW

(although differences were not significant). The main

difference between this study and Clark et al. (2018) is

that forecasts at higher spatial and temporal resolu-

tion were examined herein. Thus, it appears that the

relative skill of multi- and single-model configurations

can depend on the time and space scales at which

verification is performed. Results from the rank histo-

gram analysis were similar to the AUC and FSS results.

Both the ARW and MIX ensembles had flatter, or less

‘‘U’’ shaped, rank histograms than the NMMB ensem-

ble indicating that observations fell within the envelope

of ARW and MIX ensemble members more frequently.

In the context of the UFS, extrapolating these results

suggests that, in the short term, replacing NMMB mem-

bers with ARWmembers within the HREF would make

sense, since this should result in similar or improved

forecast guidance relative to the current version ofHREF,

and it would contribute to amore unified production suite.

However, it is important to emphasize that this would

assume that the ‘‘replacement’’ ARW members have

the same sources of nonmodel ensemble diversity (e.g.,

ICs/LBCs, time-lagging, physics) as the NMMB mem-

bers they replace. In the longer term, the results suggest

that a single-model CAM ensemble using FV3 must,

at the very least, equal the skill of an ARW ensemble.

However, even with equal skill, a combination of ARW

and FV3 members could quite possibly perform better

than an ARW ensemble. In this case, an FV3 ensemble

would need to perform better than anARWensemble to

be ideally suited for the UFS. Of course, it may be a

stretch to extrapolate these results to this extent, and it is

possible that results may be different for other forecast

fields (e.g., temperature, dewpoint, winds). Furthermore,

it is possible that as other means of introducing ensemble

spread in a single-core system are developed, such as

stochastic perturbations methods applied to uncertainties

in physics parameterizations (e.g., Jankov et al. 2019 and

references therein), additional skill will be realized.

In any case, as CAM FV3 modeling applications are

FIG. 6. Rank histograms calculated from 24-h accumulated precipitation for the ARW (blue shading), NMMB

(black outline), and MIX (green outline) ensembles. The rank histograms in (a) use the raw precipitation amounts

and those in (b) are bias corrected.

1962 WEATHER AND FORECAST ING VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:58 PM UTC



developed and incremental changes that move HREF

toward a FV3-based system are made possible, thor-

ough testing and evaluation should continue to ensure

that stakeholders like NOAA’s National Weather

Service receive the best ensemble guidance possible.
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